Package index
Fitting EQRN Tail Neural Networks
Functions to fit a tail GPD EQRN network to intermediate quantile exceedences
-
EQRN_fit_restart()
- Wrapper for fitting EQRN with restart for stability
-
EQRN_fit()
- EQRN fit function for independent data
-
EQRN_fit_seq()
- EQRN fit function for sequential and time series data
-
EQRN_predict()
- Predict function for an EQRN_iid fitted object
-
EQRN_predict_seq()
- Predict function for an EQRN_seq fitted object
-
EQRN_predict_params()
- GPD parameters prediction function for an EQRN_iid fitted object
-
EQRN_predict_params_seq()
- GPD parameters prediction function for an EQRN_seq fitted object
-
EQRN_excess_probability()
- Tail excess probability prediction using an EQRN_iid object
-
EQRN_excess_probability_seq()
- Tail excess probability prediction using an EQRN_seq object
-
compute_EQRN_GPDLoss()
- Generalized Pareto likelihood loss of a EQRN_iid predictor
-
compute_EQRN_seq_GPDLoss()
- Generalized Pareto likelihood loss of a EQRN_seq predictor
-
EQRN_save()
- Save an EQRN object on disc
-
EQRN_load()
- Load an EQRN object from disc
-
install_backend()
- Install Torch Backend
-
default_device()
- Default torch device
-
loss_GPD_tensor()
- GPD tensor loss function for training a EQRN network
-
quantile_loss_tensor()
- Tensor quantile loss function for training a QRN network
-
get_excesses()
- Computes rescaled excesses over the conditional quantiles
-
process_features()
- Feature processor for EQRN
-
perform_scaling()
- Performs feature scaling without overfitting
-
mts_dataset()
- Dataset creator for sequential data
-
FC_GPD_net()
- MLP module for GPD parameter prediction
-
FC_GPD_SNN()
- Self-normalized fully-connected network module for GPD parameter prediction
-
Separated_GPD_SNN()
- Self-normalized separated network module for GPD parameter prediction
-
Recurrent_GPD_net()
- Recurrent network module for GPD parameter prediction
-
QRNN_RNN_net()
- Recurrent quantile regression neural network module
-
GPD_excess_probability()
- Tail excess probability prediction based on conditional GPD parameters
-
fit_GPD_unconditional()
- Maximum likelihood estimates for the GPD distribution using peaks over threshold
-
predict_unconditional_quantiles()
- Predict unconditional extreme quantiles using peaks over threshold
-
predict_GPD_semiconditional()
- Predict semi-conditional extreme quantiles using peaks over threshold
-
loss_GPD()
- Generalized Pareto likelihood loss
-
unconditional_train_valid_GPD_loss()
- Unconditional GPD MLEs and their train-validation likelihoods
-
semiconditional_train_valid_GPD_loss()
- Semi-conditional GPD MLEs and their train-validation likelihoods
-
GPD_quantiles()
- Compute extreme quantile from GPD parameters
-
QRN_seq_fit()
- Recurrent QRN fitting function
-
QRN_fit_multiple()
- Wrapper for fitting a recurrent QRN with restart for stability
-
QRN_seq_predict()
- Predict function for a QRN_seq fitted object
-
QRN_seq_predict_foldwise()
- Foldwise fit-predict function using a recurrent QRN
-
QRN_seq_predict_foldwise_sep()
- Sigle-fold foldwise fit-predict function using a recurrent QRN
-
mean_squared_error()
- Mean squared error
-
mean_absolute_error()
- Mean absolute error
-
square_loss()
- Square loss
-
quantile_loss()
- Quantile loss
-
prediction_bias()
- Prediction bias
-
prediction_residual_variance()
- Prediction residual variance
-
R_squared()
- R squared
-
proportion_below()
- Proportion of observations below conditional quantile vector
-
quantile_prediction_error()
- Quantile prediction calibration error
-
quantile_exceedance_proba_error()
- Quantile exceedance probability prediction calibration error
-
multilevel_MSE()
- Multilevel quantile MSEs
-
multilevel_MAE()
- Multilevel quantile MAEs
-
multilevel_q_loss()
- Multilevel quantile losses
-
multilevel_pred_bias()
- Multilevel prediction bias
-
multilevel_resid_var()
- Multilevel residual variance
-
multilevel_R_squared()
- Multilevel R squared
-
multilevel_prop_below()
- Multilevel 'proportion_below'
-
multilevel_q_pred_error()
- Multilevel 'quantile_prediction_error'
-
multilevel_exceedance_proba_error()
- Multilevel 'quantile_exceedance_proba_error'
-
check_directory()
- Check directory existence
-
safe_save_rds()
- Safe RDS save
-
last_elem()
- Last element of a vector
-
roundm()
- Mathematical number rounding
-
vec2mat()
- Convert a vector to a matrix
-
make_folds()
- Create cross-validation folds
-
lagged_features()
- Covariate lagged replication for temporal dependence
-
vector_insert()
- Insert value in vector
-
get_doFuture_operator()
- Get doFuture operator
-
set_doFuture_strategy()
- Set a doFuture execution strategy
-
end_doFuture_strategy()
- End the currently set doFuture strategy
Prediction methods
S3 class method support for classes EQRN_iid
, EQRN_seq
and QRN_seq
, and methods predict
and excess_probability
, as a facultative alternative to their respective functions above.
-
predict(<EQRN_iid>)
- Predict method for an EQRN_iid fitted object
-
predict(<EQRN_seq>)
- Predict method for an EQRN_seq fitted object
-
predict(<QRN_seq>)
- Predict method for a QRN_seq fitted object
-
excess_probability()
- Excess Probability Predictions
-
excess_probability(<EQRN_iid>)
- Tail excess probability prediction method using an EQRN_iid object
-
excess_probability(<EQRN_seq>)
- Tail excess probability prediction method using an EQRN_iid object