Package index
Fitting EQRN Tail Neural Networks
Functions to fit a tail GPD EQRN network to intermediate quantile exceedences
-
EQRN_fit_restart() - Wrapper for fitting EQRN with restart for stability
-
EQRN_fit() - EQRN fit function for independent data
-
EQRN_fit_seq() - EQRN fit function for sequential and time series data
-
EQRN_predict() - Predict function for an EQRN_iid fitted object
-
EQRN_predict_seq() - Predict function for an EQRN_seq fitted object
-
EQRN_predict_params() - GPD parameters prediction function for an EQRN_iid fitted object
-
EQRN_predict_params_seq() - GPD parameters prediction function for an EQRN_seq fitted object
-
EQRN_excess_probability() - Tail excess probability prediction using an EQRN_iid object
-
EQRN_excess_probability_seq() - Tail excess probability prediction using an EQRN_seq object
-
compute_EQRN_GPDLoss() - Generalized Pareto likelihood loss of a EQRN_iid predictor
-
compute_EQRN_seq_GPDLoss() - Generalized Pareto likelihood loss of a EQRN_seq predictor
-
EQRN_save() - Save an EQRN object on disc
-
EQRN_load() - Load an EQRN object from disc
-
install_backend() - Install Torch Backend
-
default_device() - Default torch device
-
loss_GPD_tensor() - GPD tensor loss function for training a EQRN network
-
quantile_loss_tensor() - Tensor quantile loss function for training a QRN network
-
get_excesses() - Computes rescaled excesses over the conditional quantiles
-
process_features() - Feature processor for EQRN
-
perform_scaling() - Performs feature scaling without overfitting
-
mts_dataset() - Dataset creator for sequential data
-
FC_GPD_net() - MLP module for GPD parameter prediction
-
FC_GPD_SNN() - Self-normalized fully-connected network module for GPD parameter prediction
-
Separated_GPD_SNN() - Self-normalized separated network module for GPD parameter prediction
-
Recurrent_GPD_net() - Recurrent network module for GPD parameter prediction
-
QRNN_RNN_net() - Recurrent quantile regression neural network module
-
GPD_excess_probability() - Tail excess probability prediction based on conditional GPD parameters
-
fit_GPD_unconditional() - Maximum likelihood estimates for the GPD distribution using peaks over threshold
-
predict_unconditional_quantiles() - Predict unconditional extreme quantiles using peaks over threshold
-
predict_GPD_semiconditional() - Predict semi-conditional extreme quantiles using peaks over threshold
-
loss_GPD() - Generalized Pareto likelihood loss
-
unconditional_train_valid_GPD_loss() - Unconditional GPD MLEs and their train-validation likelihoods
-
semiconditional_train_valid_GPD_loss() - Semi-conditional GPD MLEs and their train-validation likelihoods
-
GPD_quantiles() - Compute extreme quantile from GPD parameters
-
QRN_seq_fit() - Recurrent QRN fitting function
-
QRN_fit_multiple() - Wrapper for fitting a recurrent QRN with restart for stability
-
QRN_seq_predict() - Predict function for a QRN_seq fitted object
-
QRN_seq_predict_foldwise() - Foldwise fit-predict function using a recurrent QRN
-
QRN_seq_predict_foldwise_sep() - Sigle-fold foldwise fit-predict function using a recurrent QRN
-
mean_squared_error() - Mean squared error
-
mean_absolute_error() - Mean absolute error
-
square_loss() - Square loss
-
quantile_loss() - Quantile loss
-
prediction_bias() - Prediction bias
-
prediction_residual_variance() - Prediction residual variance
-
R_squared() - R squared
-
proportion_below() - Proportion of observations below conditional quantile vector
-
quantile_prediction_error() - Quantile prediction calibration error
-
quantile_exceedance_proba_error() - Quantile exceedance probability prediction calibration error
-
multilevel_MSE() - Multilevel quantile MSEs
-
multilevel_MAE() - Multilevel quantile MAEs
-
multilevel_q_loss() - Multilevel quantile losses
-
multilevel_pred_bias() - Multilevel prediction bias
-
multilevel_resid_var() - Multilevel residual variance
-
multilevel_R_squared() - Multilevel R squared
-
multilevel_prop_below() - Multilevel 'proportion_below'
-
multilevel_q_pred_error() - Multilevel 'quantile_prediction_error'
-
multilevel_exceedance_proba_error() - Multilevel 'quantile_exceedance_proba_error'
-
check_directory() - Check directory existence
-
safe_save_rds() - Safe RDS save
-
last_elem() - Last element of a vector
-
roundm() - Mathematical number rounding
-
vec2mat() - Convert a vector to a matrix
-
make_folds() - Create cross-validation folds
-
lagged_features() - Covariate lagged replication for temporal dependence
-
vector_insert() - Insert value in vector
-
get_doFuture_operator() - Get doFuture operator
-
set_doFuture_strategy() - Set a doFuture execution strategy
-
end_doFuture_strategy() - End the currently set doFuture strategy
Prediction methods
S3 class method support for classes EQRN_iid, EQRN_seq and QRN_seq, and methods predict and excess_probability, as a facultative alternative to their respective functions above.
-
predict(<EQRN_iid>) - Predict method for an EQRN_iid fitted object
-
predict(<EQRN_seq>) - Predict method for an EQRN_seq fitted object
-
predict(<QRN_seq>) - Predict method for a QRN_seq fitted object
-
excess_probability() - Excess Probability Predictions
-
excess_probability(<EQRN_iid>) - Tail excess probability prediction method using an EQRN_iid object
-
excess_probability(<EQRN_seq>) - Tail excess probability prediction method using an EQRN_iid object