Skip to contents

Separated single-fold version of QRN_seq_predict_foldwise(), for computation purposes.

Usage

QRN_seq_predict_foldwise_sep(
  X,
  y,
  q_level,
  n_folds = 3,
  fold_todo = 1,
  number_fits = 3,
  seq_len = 10,
  seed = NULL,
  ...
)

Arguments

X

Matrix of covariates, for training. Entries must be in sequential order.

y

Response variable vector to model the conditional quantile of, for training. Entries must be in sequential order.

q_level

Probability level of the desired conditional quantiles to predict.

n_folds

Number of folds.

fold_todo

Index of the fold to do (integer in 1:n_folds).

number_fits

Number of restarts, for stability.

seq_len

Data sequence length (i.e. number of past observations) used during training to predict each response quantile.

seed

Integer random seed for reproducibility in network weight initialization.

...

Other parameters given to QRN_seq_fit().

Value

A named list containing the foldwise predictions and fits. It namely contains:

predictions

the numerical vector of quantile predictions for each observation entry in y,

fits

a list containing the "QRN_seq" fitted networks for each fold,

cuts

the fold cuts indices,

folds

a list of lists containing the train indices, validation indices and fold separations as a list for each fold setup,

n_folds

number of folds,

q_level

probability level of the predicted quantiles,

train_losses

the vector of train losses on each fold,

valid_losses

the vector of validation losses on each fold,

min_valid_losses

the minimal validation losses obtained on each fold,

min_valid_e

the epoch index of the minimal validation losses obtained on each fold.