Recurrent network module for GPD parameter prediction
Source:R/EQRN_seq_network_structures.R
Recurrent_GPD_net.Rd
A recurrent neural network as a torch::nn_module
,
designed for generalized Pareto distribution parameter prediction, with sequential dependence.
Usage
Recurrent_GPD_net(
type = c("lstm", "gru"),
nb_input_features,
hidden_size,
num_layers = 1,
dropout = 0,
shape_fixed = FALSE,
device = EQRN::default_device()
)
Arguments
- type
the type of recurrent architecture, can be one of
"lstm"
(default) or"gru"
,- nb_input_features
the input size (i.e. the number of features),
the dimension of the hidden latent state variables in the recurrent network,
- num_layers
the number of recurrent layers,
- dropout
probability parameter for dropout before each hidden layer for regularization during training,
- shape_fixed
whether the shape estimate depends on the covariates or not (bool),
- device
a
torch::torch_device()
for an internal constant vector. Defaults todefault_device()
.
Details
The constructor allows specifying:
- type
the type of recurrent architecture, can be one of
"lstm"
(default) or"gru"
,- nb_input_features
the input size (i.e. the number of features),
- hidden_size
the dimension of the hidden latent state variables in the recurrent network,
- num_layers
the number of recurrent layers,
- dropout
probability parameter for dropout before each hidden layer for regularization during training,
- shape_fixed
whether the shape estimate depends on the covariates or not (bool),
- device
a
torch::torch_device()
for an internal constant vector. Defaults todefault_device()
.