Tail excess probability prediction using an EQRN_seq object
Source:R/EQRN_seq.R
EQRN_excess_probability_seq.Rd
Tail excess probability prediction using an EQRN_seq object
Usage
EQRN_excess_probability_seq(
val,
fit_eqrn,
X,
Y,
intermediate_quantiles,
interm_lvl = fit_eqrn$interm_lvl,
crop_predictions = FALSE,
body_proba = "default",
proba_type = c("excess", "cdf"),
seq_len = fit_eqrn$seq_len,
device = default_device()
)
Arguments
- val
Quantile value(s) used to estimate the conditional excess probability or cdf.
- fit_eqrn
Fitted
"EQRN_seq"
object.- X
Matrix of covariates to predict the response's conditional excess probabilities.
- Y
Response variable vector corresponding to the rows of
X
.- intermediate_quantiles
Vector of intermediate conditional quantiles at level
fit_eqrn$interm_lvl
.- interm_lvl
Optional, checks that
interm_lvl == fit_eqrn$interm_lvl
.- crop_predictions
Whether to crop out the fist
seq_len
observations (which areNA
) from the returned vector- body_proba
Value to use when the predicted conditional probability is below
interm_lvl
(in which case it cannot be precisely assessed by the model). If"default"
is given (the default),paste0(">",1-interm_lvl)
is used ifproba_type=="excess"
, andpaste0("<",interm_lvl)
is used ifproba_type=="cdf"
.- proba_type
Whether to return the
"excess"
probability overval
(default) or the"cdf"
atval
.- seq_len
Data sequence length (i.e. number of past observations) used to predict each response quantile. By default, the training
fit_eqrn$seq_len
is used.- device
(optional) A
torch::torch_device()
. Defaults todefault_device()
.