Usage
mean_squared_error(
y,
y_hat,
return_agg = c("mean", "sum", "vector"),
na.rm = FALSE
)
Arguments
- y
Vector of observations or ground-truths.
- y_hat
Vector of predictions.
- return_agg
Whether to return the "mean"
(default), "sum"
, or "vector"
of errors.
- na.rm
A logical value indicating whether NA
values should be stripped before the computation proceeds.
Value
The mean (or total or vectorial) squared error between y
and y_hat
.
Examples
mean_squared_error(c(2.3, 4.2, 1.8), c(2.2, 4.6, 1.7))
#> [1] 0.06