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S.1. Additional LSTM illustration. Figure S.1 shows a schematic representation of a
multilayer LSTM network.

S.2. Details on Algorithms 1 and 2. Algorithms 1 and 2 contain some abbreviated
function calls. We give some details here:

RANDOMVALIDATIONSPLIT(I): For independent data, splits the index set I randomly
into training set T and validation set V with prespecified proportions.
SEQUENTIALVALIDATIONSPLIT(I): For sequential data, splits the index set I sequen-
tially into training set T and validation set V with prespecified proportions, such that all
observations in T are before V in time.
INITIALIZENETWORKWEIGHTS(Θ) / INITIALIZERECURRENTNETWEIGHTS(Θ): Initial-
izes the weights of the GPD (recurrent) neural network randomly. The number of weights
is determined by Θ.
GETMINIBATCHES(T ): Splits the training set T into mini-batches for stochastic gradient
descent.
BACKPROPUPDATE(ℓ, Ŵ , xB, Q̂xB(τ0), Θ): Updates the parameter vector by a gradient
step computed by backpropagation; may involve regularization methods such as L2-penalty
or dropout, specified in the hyperparameters Θ.
LOSSNOTIMPROVING(Ŵ , xV , Q̂xV (τ0), zV ): If validation loss is tracked, then also a
stopping criterion (e.g., for early stopping) is specified, and this function returns TRUE if
this criterion is attained, indicating that the validation loss is not improving any more.

S.3. Simulation study for independent observations. Three data-generating models
with independent observations are considered. The training sample D = {(xi, yi)}ni=1 is drawn
from

(S.1)

{
X∼U ([−1,1]p) ,

Y |X= x∼ σ(x) · tα(x),

with p= 10, α(x) = 1/ξ(x) := 7 · {1 + exp(4x1 + 1.2)}−1 + 3, and three different models
for σ(x):

Model 1: σ(x) := 1+6ϕ(x1, x2), where ϕ is the bivariate Gaussian density with correlation
0.9,
Model 2: σ(x) := 4+ 3cos(7

∥∥(x1, x2)⊤∥∥2 + 3),
Model 3: σ(x) := 4+ 3cos(6∥x∥2 + 3.5).

To avoid bias in the selection of the data models, α(x) and σ(x) in Model 1 are the same as in
the simulation study in Velthoen et al. (2023). The choices for Models 2 and 3 are designed to
study more complex covariate dependencies. The constants are chosen to have positive scale
values and enough variation for the inference task to be interesting.
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FIG S.1. Multilayer LSTM network flowchart from input x̃t := (xt−s, . . . ,xt−1) to output g̃W (x̃t), with loss
evaluation. The LSTM cells represent the transformation in (9).

As the focus of the experiments is on the extremal part of the model and since all extreme
value competitors use the same intermediate quantile estimates, we use the true Qx(τ0) as
intermediate quantiles. Two main types of network architectures are considered for EQRN.
The first type is an MLP with tanh activation functions, narrow architectures with between
one and four hidden layers and optional L2 weight penalty as training regularization. The
second type is self-normalizing networks (Klambauer et al., 2017) using SELU activation
functions, deeper architectures with between three and eight hidden layers and optional alpha
dropout as regularization. This type of network is designed to maintain unit variance and zero
mean across layers in deeper networks trained for regression tasks, in order to avoid vanishing
and exploding gradient issues. Results suggest that the additional flexibility of the second type
was not necessary for the three tasks at hand, as they never yielded better validation scores
than the best tanh models. Table S.1 summarizes the hyperparameters of the chosen EQRN
networks.

To evaluate the accuracy of the best models over the full feature space X = [−1,1]p, we use
the integrated squared error (ISE) between the prediction Q̂x(τ) and the true quantile Qx(τ),

(S.2)
∫
X

(
Q̂x(τ)−Qx(τ)

)2
dx.

We generate test features using a Halton sequence (Halton, 1964) and compute the MSE
between the corresponding predicted and true response quantiles, to estimate the p-dimensional
integral.

Figure S.2 shows the accuracy of EQRN and the competitor methods for an increasingly
large τ , for the three data models. The competitors’ performances shown here were also
significantly improved by using the intermediate Q̂x(τ0) as an additional covariate. For every
model, EQRN outperforms all competitors, with a difference in accuracy increasing with τ .
EGAM seems to suffer from the large dimension of the feature space at large τ , both when the
actual quantile depends on only two or all of the ten features. The difference in accuracy of
EQRN and GBEX compared to the unconditional and semiconditional models is particularly
significant for Models 1 and 3, and EQRN generally outperforms GBEX, especially at high
probability levels.
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TABLE S.1
Hyperparameters of the EQRN networks with the best validation loss for the three independent data models.

Hidden activation function Hidden layer dimensions L2 penalty
Model 1 tanh (128,128,128) 10−5

Model 2 tanh (20,10,10) 10−5

Model 3 tanh (10,10,10) 0
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FIG S.2. Root integrated squared error between predicted and true conditional quantiles at different probability
levels τ (log-scale) for the selected EQRN model and the improved competitors, for data Models 1–3 (left to right).
The cropped-out RMISE for EGAM at level 0.9999 are around 43, 115 and 150, respectively.

We also define the quantile R squared of Q̂x(τ) over the sample D as

(S.3) R2
τ := 1−

∑n
i=1

(
Qxi

(τ)− Q̂xi
(τ)

)2

∑n
i=1

(
Qxi

(τ)−QD(τ)
)2 , with QD(τ) :=

1

n

n∑
i=1

Qxi
(τ).

The definition is similar to the classical R squared coefficient of determination in regression,
but the true conditional quantile values are used as targets instead of the response observations.
The R2

τ is essentially the reversed MSE normalized by the variance of the true conditional
quantile. A value close to unity indicates a very low MSE compared to the quantile variance,
and negative values indicate a MSE larger than the quantile variance.

Figure S.3 shows the quantile R squared, the biases and the residual standard deviations
of the same respective quantile predictions compared to the truth. The R squared lead to the
same conclusions as the RISE. Regarding the bias-variance decomposition of the RISE, it
seems that the variance term is dominating the square bias. Although EQRN is here not the
least biased model for large τ values, it is its dominating performance in terms of residual
variance that leads to it having the lowest RISE values for every data model.

Figure S.4 shows the predicted Q̂x(0.9995) for EQRN and the competitors, as a function
of the two significant covariates (x1, x2) for Model 1. At that extreme level, EQRN still seems
to capture the true conditional quantile function quite well, although the predictions show
some residual noise. GBEX shows an elliptical stepwise approximation behaviour. and seems
to underestimate the smaller quantiles and overestimate the largest quantiles. EGAM and GRF
fail drastically at recovering the conditional quantile function. The semiconditional estimates
are a translation of the intermediate quantiles, which in particular fail to capture the varying
shape along X1.
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FIG S.3. Quantile R squared, bias and residual standard deviation of the predicted quantiles compared to the
truth at different probability levels (log-scale) for the selected EQRN model and improved competitors, for data
Models 1–3 (top to bottom).

S.4. Simulation study for sequentially dependent data. The main results of the sim-
ulation study on sequentially dependent data are presented in the main paper. This section
discusses additional results. Figure S.5 shows part of the sequential data simulated from the
generating process described in the main paper.

Figure S.6 shows the quantile R squared (S.3), the biases and the residual standard devia-
tions of the quantile predictions compared to the truth, for the two selected EQRN models and
competitors. The R squared evolution again shows EQRN is the model that best captures the
covariate sequential dependence in the tail, as it outperforms all competitors with a difference
in accuracy increasing with τ . In terms of bias, the penalized EQRN here scores similar values
as EXQAR, and both EQRN versions outperform all other methods. The unpenalized EQRN
has the lowest residual variance, closely followed by both GBEX and the penalized EQRN,
although GBEX has a bad accuracy overall, due to its large bias.

Figure S.7 shows the impact of the intermediate level τ0 on the accuracy of the best
EQRN model. The value τ0 = 0.8 used in the rest of the analysis leads to the best RMSE.
This relatively low value shows that τ0 can be chosen much lower than for the classical
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FIG S.4. Conditional quantile predictions of EQRN and the improved competitor models at probability level
τ = 0.9995, shown as a function of X1 and X2, for Model 1.
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FIG S.5. First 1,000 observations of the sequential data simulated from (13).

unconditional GPD model. An intuitive explanation for this fact is the following. In a situation
without covariates, the choice of τ0 is a trade-off between approximation bias (which favours
larger thresholds) and variance (which favours lower thresholds); see Figure 3 in the main
document. For covariate-dependent data, the distribution of the exceedances varies and more
data is needed to accurately capture this function of the covariates. The variance becomes more
important than the approximation bias, therefore, lower thresholds are preferable. Moreover,
the flexibility of the GPD regression neural network model seems to be able to absorb some of
the approximation bias, also allowing for a low value of τ0.

The final accuracy seems in fact to not be too sensitive to the choice for τ0 compared to the
network’s grid-searched hyperparameters, discussed in the main analysis, as the differences in
RMSE for τ0 values close to the optimum are relatively small. As mentioned in Section 3 of
the main paper, τ0 cannot be treated as a classical tuning parameter, as different values for τ0
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FIG S.6. Quantile R squared, bias and residual standard deviation of the predicted quantiles compared to the
truth at different probability levels (log-scale) for the selected EQRN model and the improved competitors, for the
sequential data model.
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FIG S.7. Boxplot of the absolute residuals of the quantile predictions from the selected EQRN model (blue) and
their RMSE (red diamond) at probability levels 0.995 (left), 0.999 (middle) and 0.9995 (right) for different choices
of intermediate probability level τ0, for the sequential data model.

generally yield different subsets of exceedances. Thus, the likelihood (11), which is used as a
goodness of fit metric for hyperparameter tuning, would not be comparable between models.
The RMSE cannot be computed in practice either, since Qx(τ) is generally unknown.

S.5. Application: competitor results. The main results from our application to fore-
casting flood risk in Switzerland using our proposed EQRN methodology are presented in
the main paper. This section discusses and compares additional results using the competitor
methods, adapted to provide the same type of forecast as the EQRN approach, with a focus on
the 2005 flood event (see Figure 2 in the main paper).

We first observe that the predictions have roughly the same behaviour, which shows that
all methods capture at least some of the temporal structure based on the past covariates. The
semiconditional method (Figure S.8) is clearly not flexible enough, since the predictions
only show a weak sensitivity to the changes in covariates. It also fails to trigger any early
warning during the main event, due to low probability ratio forecasts never exceeding the
selected threshold value of 100. The reason is that, while the intermediate quantile is covariate-
dependent, the GPD parameters are constant over time. We conclude that a covariate-dependent
model for the tail is required in this application. Figure S.9 shows predictions from the EXQAR
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FIG S.8. Top: Daily average discharge (points) at the Bern–Schönau station (62) and one-day-ahead semicon-
ditional forecasts of conditional 100-year quantiles (solid line) during the 2005 flood. Horizontal lines show
unconditional Q100 based on GEV (dashed) and GPD (dotted). Bottom: One-day-ahead forecast of the condi-
tional probability of exceeding the GEV estimated Q100 as a ratio to the unconditional probability, using the
semiconditional parameter forecast. The vertical line indicates August 22, the day of the first exceedance.
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FIG S.9. Top: Daily average discharge (points) at the Bern–Schönau station (62) and one-day-ahead EXQAR
forecasts of conditional 100-year quantiles (solid line) during the 2005 flood. Horizontal lines show unconditional
Q100 based on GEV (dashed) and GPD (dotted). Bottom: One-day-ahead forecast of the conditional probability
of exceeding the GEV estimated Q100 as a ratio to the unconditional probability, using the EXQAR forecast. The
vertical line indicates August 22, the day of the first exceedance.

model (Li and Wang, 2019). This model is more sensitive to changes in the covariates, but the
regression function looks fairly erratic, with sudden spikes at some time points. Those spikes
are here due to unusually small shape estimates in combination with a large-scale estimate.
This might be caused by an instability in the estimation of the local moments used in the
model. EGAM (Figure S.10) fails to trigger an early warning for the first day of the flooding
event as its quantile and probability ratio forecasts are very low, but then seems to severely
overestimate the river flow during the rest of the event. The best competing model seems to be
the GBEX (Figure S.11), as it yields a smooth prediction curve with a pronounced spike at the
main event. Comparing this with our EQRN method (Figure 2 in the main paper), it reacts
slightly later and its risk forecast (probability ratio) on the day before the first exceedance is
significantly lower than for EQRN.
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FIG S.10. Top: Daily average discharge (points) at the Bern–Schönau station (62) and one-day-ahead EGAM
forecasts of conditional 100-year quantiles (solid line) during the 2005 flood. Horizontal lines show unconditional
Q100 based on GEV (dashed) and GPD (dotted). Bottom: One-day-ahead forecast of the conditional probability
of exceeding the GEV estimated Q100 as a ratio to the unconditional probability, using the EGAM parameter
forecast. The vertical line indicates August 22, the day of the first exceedance.

D
is

ch
ar

ge
 [m

3 s−1
]

P
ro

ba
bi

lit
y 

ra
tio

2005 Jul 2005 Aug 2005 Sep 2005 Oct

400

800

1200

0

500

1000

1500

2000

Date

FIG S.11. Top: Daily average discharge (points) at the Bern–Schönau station (62) and one-day-ahead GBEX
forecasts of conditional 100-year quantiles (solid line) during the 2005 flood. Horizontal lines show unconditional
Q100 based on GEV (dashed) and GPD (dotted). Bottom: One-day-ahead forecast of the conditional probability of
exceeding the GEV estimated Q100 as a ratio to the unconditional probability, using the GBEX parameter forecast.
The vertical line indicates August 22, the day of the first exceedance.

This qualitative way of checking the model is important since in real-world applications,
the true extreme quantiles are unknown. Therefore, only some quantitative model checks can
be performed, like the right-hand panel of Figure 7 in the main paper showing calibration
in the number of quantile-exceeding test observations. Figure S.12 compares this number
of quantile-exceedances for the competitor predictions. Although they can give evidence
against the suitability of a model, it highlights that such metrics only assess calibration but
not goodness-of-fit nor accuracy, as unconditional methods obtain similar values to flexible
accurate methods. This underlines the importance of the simulation studies, which allow us to
evaluate in several settings which methods are more accurate. In particular, in situations with
temporal dependence, our EQRN method outperforms the competitors (e.g., Figure 5 in the
main paper).
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FIG S.12. Difference between the number of observations exceeding the EQRN and competitor quantile predictions
on the test set and the expected number of exceedances, for different probability levels (log-scale).
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