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NEURAL NETWORKS FOR EXTREME QUANTILE REGRESSION WITH AN
APPLICATION TO FORECASTING OF FLOOD RISK
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Risk assessment for extreme events requires accurate estimation of high
quantiles that go beyond the range of historical observations. When the risk
depends on the values of observed predictors, regression techniques are used
to interpolate in the predictor space. We propose the EQRN model that com-
bines tools from neural networks and extreme value theory into a method
capable of extrapolation in the presence of complex predictor dependence.
Neural networks can naturally incorporate additional structure in the data. We
develop a recurrent version of EQRN that is able to capture complex sequen-
tial dependence in time series. We apply this method to forecast flood risk
in the Swiss Aare catchment. It exploits information from multiple covari-
ates in space and time to provide one-day-ahead predictions of return levels
and exceedance probabilities. This output complements the static return level
from a traditional extreme value analysis, and the predictions are able to adapt
to distributional shifts as experienced in a changing climate. Our model can
help authorities to manage flooding more effectively and to minimize their
disastrous impacts through early warning systems.

1. Introduction. Risk assessment is concerned with the analysis of rare events, which
have small occurrence probabilities but carry the potential of serious impacts on our health,
the environment, or the economy. Examples of such extreme events are floods in hydrology,
crises in the financial system, or heatwaves in a changing climate. In these applications the
quantity of interest is typically a univariate response variable Y representing the random risk
factor. The goal is to estimate a quantile Q(τ) = F−1

Y (τ ) at level τ ∈ [0,1], where we denote
by F−1

Y the generalized inverse of the distribution function of Y .
Since for risk quantification the level τ is usually very close to 1 so that the quantile Q(τ)

goes beyond the range of the data, the classical approach is to model the tail of the distribution
of Y using extrapolation results from extreme value theory. Two main approaches exist. When
Y represents, say, a daily quantity, then the generalized Pareto distribution (GPD) can be used
to approximate the tail above a high threshold u by (Balkema and de Haan (1974), Pickands
(1975))

P(Y > y) ≈ P(Y > u)

(
1 + ξ

y − u

σ(u)

)−1/ξ

+
, y ≥ u,(1)

where ξ ∈ R and σ(u) > 0 are the shape and scale parameters, and the second factor on
the right-hand side is the GPD approximation to P(Y > y|Y > u). On the other hand, if Y

represents an annual maximum, then the generalized extreme value distribution provides a
good fit (Fisher and Tippett (1928)). In hydrology and climate science, risk is often assessed
as the T -year return level QT , that is, the size of an event that is exceeded on average once
every T years. If Y represent a quantity with nY independent recordings per year (e.g., nY =
365 for daily data and nY = 1 for annual maxima), then the T -year return level is the quantile
QT = Q(1 − 1/(nY T )).
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FIG. 1. Topographic map of water catchment of the gauging station in Bern–Schönau (62) on the Aare in
Switzerland. Another gauging station upstream in Gsteig (43) on the Lütschine river and six meteorological sta-
tions with precipitation measurements (triangles) are also shown.

Figure 1 shows the river catchment of a gauging station on the Aare river in Bern, Switzer-
land. It is part of the Aare–Rhein basin, where flooding is a major economic and safety
concern (Andres et al. (2021)). The Swiss Federal Office for the Environment (FOEN) pro-
vides recordings of daily average discharges throughout the country. For risk assessment they
report the 100-year return levels using the GEV method for annual maxima and the GPD for
large daily discharges. The horizontal lines in Figure 2 show estimates of this return level at
the Bernese station based on data from the years 1930–1958. Both methods give very similar
results.

The disadvantage of such an unconditional approach is twofold. First, the return level is
static and unable to reflect changes in the size of extreme floods over time, which can occur,
for instance, due to climate change. For the Bernese station, for instance, a structural break
has been observed in the nineties without a clearly defined cause,1 making classical extreme
value modelling challenging. Second, while the return level QT is relevant for the construc-
tion of long-term flood infrastructure, it can not be used to assess the risk of flooding on a
given day. Such forecasting of extreme events is crucial for early warning systems. Indeed,
the probability of exceeding on a particular day a given high threshold, say the (constant)
100-year return level, depends on many covariates X, such as the river flows upstream and
precipitation in the catchments during the preceding days and weeks.

In this paper we, therefore, advocate a conditional version of return levels defined as the
conditional quantile of Y , given a vector of observed covariates X = x, that is,

(2) Qx(τ ) = F−1
Y |X=x(τ ).

The interpretation of such a conditional T -year return level QT
x = Qx(1 − 1/(nY T )) is dif-

ferent from the unconditional return level QT . Since QT
x depends on the exact configuration

1See flood report of the FOEN at https://www.hydrodaten.admin.ch/en/2135.html.

https://www.hydrodaten.admin.ch/en/2135.html


2820 O. C. PASCHE AND S. ENGELKE

FIG. 2. Top: Daily average discharge (points) at the Bern–Schönau station (62) and one-day-ahead EQRN
forecasts of conditional 100-year quantiles (solid line) during the 2005 flood. Horizontal lines show unconditional
Q100 based on GEV (dashed) and GPD (dotted). Bottom: One-day-ahead EQRN forecast of the conditional
probability of exceeding the GEV estimated Q100 as a ratio to the unconditional probability. The vertical line
indicates August 22, the day of the first exceedance.

of the covariates x, one can see a conditional T -year return level as the size of an event that
is exceeded in average once every T years, if the covariate vector X of all observations of Y

had the same value x. A more precise interpretation is to see QT
x as the value that is exceeded

in the next time step with probability 1/(nY T ), and we refer to it as the conditional quantile
with return period T years; for a comprehensive discussion of return levels and quantiles,
see Bücher and Zhou (2021).

The top panel of Figure 2 shows one-day-ahead forecasts of such conditional 100-year
quantiles Q100

x for the Bernese river data from the method of this paper, fitted to the years
1930–1958. We see that, as opposed to the unconditional return level Q100, the conditional
quantile changes from day to day, depending on past precipitation and river flows. In fact, on
August 21, the day before the first exceedance of the unconditional Q100 during the serious
flood of August 2005 in Bern, the size of the conditional 100-year event predicted for the
next day was much higher than on other days, and the forecasted conditional probability of
such an exceedance (bottom panel of Figure 2) was 920 times larger than the static 100-
year probability. Both outputs can be used as triggers for early warnings and additional flood
management measures. In particular, the days when an exceedance above Q100 is likely can
be effectively pinpointed thanks to their temporal sparsity in the probability forecast.

Forecasting extreme events is notoriously difficult due to the low occurrence probabilities
involved. This is particularly true for hydrological models, which are typically used by na-
tional agencies and which do not use explicit tail extrapolation. In the aftermath of the 2005
flood, the FOEN published a detailed analysis of the internal forecasting procedures during
this event (Bezzola and Hegg (2007)). The report showed that too-late warnings lead to more
severe consequences since forecasters did not trust the predicted precipitation amounts dur-
ing this extreme scenario and underestimated the flood risk. This gives another motivation
why our statistical model and its output in Figure 2 could have been a helpful tool during this
flood.

Conditional quantiles (2) are studied in the field of quantile regression, where many flex-
ible methods exist (Athey, Tibshirani and Wager (2019), Meinshausen (2006), Zhang, Quan
and Srinivasan (2019), Cannon (2011)). While they work well for quantile levels within the
data range, they break down for extreme values of τ close to 1. Such extreme quantile re-
gression relies on extrapolation results as in (1), where extreme value parameters, such as
the scale σ(x) and shape ξ(x), may be modelled as functions of the covariates through
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linear models (Wang, Li and He (2012), Li and Wang (2019)), generalized additive mod-
els (Chavez-Demoulin and Davison (2005), Youngman (2019)), or kernel methods (Daouia
et al. (2011), Gardes and Stupfler (2019), Velthoen et al. (2019)). To overcome limitations of
additive and kernel-based methods in higher dimensions, more recently, flexible tree-based
methods have been combined with the GPD extrapolation for predicting extreme conditional
quantiles (Gnecco, Terefe and Engelke (2022), Velthoen et al. (2023)) or predictive tail distri-
butions (Koh (2023)) on complex data. Tree-based methods have the advantage of requiring
little tuning for good prediction performance. However, they can not incorporate additional
structure of the data as encountered in time series or spatial applications.

The goal of our work is to combine ideas from extreme value theory and machine learning
to propose an extreme quantile regression model that has the ability to extrapolate in the direc-
tion of the response Y and to model complex covariate dependencies in the predictors X. We
propose an extreme quantile regression network (EQRN) that models covariate-dependent
GPD parameters σ(x) and ξ(x) as outputs of a neural network. Conditional quantile esti-
mates at the desired extreme level are then readily derived from the estimated conditional
tail distribution. Neural networks are known for their ability to model complex dependencies
and to approximate any measurable function arbitrarily well (Hornik (1991)). The second
advantage is versatility. The deep learning literature is rich in network architectures, activa-
tion functions, and regularization methods. In particular, convolutions produce shift-invariant
models for covariates with spatial dependencies, and recurrent architectures provide models
for sequentially dependent observations such as time series. In our application of flood fore-
casting with time-dependent data, recurrent neural networks (Elman (1990), Werbos (1988))
are of particular interest.

The main output of our EQRN model for sequentially dependent data is the one-day-ahead
risk forecast, either in terms of conditional quantiles or exceedance probabilities. Thanks to
the GPD approximation, the method can extrapolate beyond the range of the data, as illus-
trated in Figure 2. The strength of our recurrent model lies in the ability to exploit information
from multiple covariates and capture complex time dependence. It is, therefore, an effective
early warning tool even for unprecedented, record-shattering events, like the 2005 floods.
This is of particular importance in a nonstationary system, where climate change makes ex-
treme events increasingly likely (Fischer, Sippel and Knutti (2021)).

The main contributions of the paper are threefold. First, our EQRN method is the first to
model the conditional GPD parameters through neural networks. Thanks to the large number
of neural network architectures, this expands the range of possible applications for extreme
quantile regression to new areas. While we concentrate on sequentially dependent data, our
method can be used, for instance, in combination with convolutional or graphical neural
networks for spatial covariates. Second, a major technical contribution is to make neural net-
works applicable in the extreme value context. To stabilize the prediction of extreme quantiles
in these highly flexible regression methods, we propose to use an orthogonal reparametriza-
tion of the GPD deviance, a suitable choice of activation functions, and the use of the inter-
mediate quantiles as additional covariates; the latter is a new idea that seems to also improve
other extreme quantile methods. Finally, a main novelty is the application to flood forecast-
ing and the notion of conditional return levels that can be used as early warnings. With this
perspective our method enables applications in many other areas, such as the one-day-ahead
forecasting of the value-at-risk or of the expected shortfall in financial time series.

The paper is organized as follows. In Section 2 we provide background on quantile re-
gression, extreme value theory, and neural networks. We propose our EQRN model for both
independent and sequentially dependent data in Section 3. Section 4 contains a simulation
study to assess the performance of our approach in comparison to existing methods. In Sec-
tion 5 we describe the Swiss river data, apply our methodology to forecast flood risk and
discuss the implications of the results. Section 6 concludes with a brief discussion.
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2. Background.

2.1. Quantile regression. In the classical quantile regression setup, we observe an inde-
pendent and identically distributed sample D = {(xi , yi)}ni=1 of the random vector (X, Y ),
where Y is the real-valued response variable and X is a vector of p covariates (or predictors).
One aims at predicting the conditional quantile Qx(τ ) defined in (2) of Y , given X = x, for
some predictor value x ∈ R

p and probability level τ ∈ (0,1) of interest.
Analogously to regression that minimizes the mean squared error, quantile regression min-

imizes the quantile loss,

(3) Qx(τ ) = arg min
q

E
[
ρτ (Y − q)|X = x

]
,

where ρτ (t) := t (τ − 1{t<0}) is the quantile check function (Koenker and Bassett (1978)).
Many parametric and nonparametric quantile regression models exist, including linear mod-
els (Chernozhukov (2005)), random forests (Athey, Tibshirani and Wager (2019)), and neural
networks (Cannon (2011), Zhang, Quan and Srinivasan (2019)). They yield a conditional
quantile estimate by minimizing the empirical quantile loss over the training sample D, that
is,

(4) Q̂x(τ ) = arg min
qτ ∈M

1

n

n∑
i=1

ρτ

(
yi − qτ (xi )

)
,

where M is the set of possible quantile functions qτ (·) characterized by the model.
Classical methods for quantile regression that rely on the quantile loss (3) perform well

for “moderate” probability levels τ . To define what that means exactly, we typically let τn

depend on the sample size n. The expected number of exceedances of yi over the respective
conditional quantile Qxi

(τn), i = 1, . . . , n, is given by n(1−τn). With moderately extreme, or
intermediate, we refer to a sequence τn → 1 with n(1 − τn) → ∞, meaning that the quantile
goes to the upper endpoint of the distribution, but there are more and more exceedances
with growing sample size n. On the other hand, we call a quantile level τn → 1 extreme if
n(1 − τn) → c ∈ [0,∞); that is, there are finitely many, or possibly zero, exceedances over
Qxi

(τn) in the sample. In this situation, classical quantile regression methods do not perform
well due to the scarcity of observations in the tail of the response.

The left panel of Figure 3 illustrates this issue for a sample y1, . . . , yn with n = 1000 and
no covariates. The dashed line shows for different quantile levels τn the empirical quantile

FIG. 3. Left: True τ -quantiles (solid line) compared to empirical estimates (dashed line) and GPD based es-
timates (dotted line) for moderate to extreme probability levels (log-scale) for sample size 1000. Estimates are
averages over 100 trials. Right: Multilayer perceptron flowchart from input x to output gW (x), with loss function
� and corresponding response y.
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estimates, obtained by solving the respective quantile loss function without covariates. It can
be seen that as soon as the number of exceedances n(1− τn) < 1, that is, τn > 99.9%, there is
a significant bias compared to the true quantiles (solid line). The reason is that the empirical
estimates can not predict higher than the largest observation. When covariates are present,
this issue persists, since quantile regression relies on solving the empirical quantile loss (4).

In the sequel we omit the dependence on n and write τ instead of τn. Intermediate quantile
levels will be denoted by τ0.

2.2. Generalized Pareto distribution. In order to predict well on extreme quantiles, a
method should rely on asymptotic results from extreme value theory for accurate extrapola-
tion beyond the sample. In particular, we rely on the generalized Pareto distribution (GPD).
In the presence of covariates, it arises as an approximation of the tail of the distribution of
Y |X = x. More precisely, we use a conditional version of (1),

P(Y > y|X = x) ≈ (1 − τ0)

(
1 + ξ(x)

y − u(x)

σ (x)

)−1/ξ(x)

+
, y > u(x),(5)

where the threshold u(x) is chosen as an intermediate quantile Qx(τ0) at level τ0 ∈ (0,1)

close to 1, and the shape ξ(x) ∈ R and scale σ(x) > 0 depend on the covariates; here we omit
the dependence of σ(x) on the intermediate level τ0 in the notation. This approximation holds
under weak conditions on the tail of Y |X = x; see Balkema and de Haan (1974), Pickands
(1975) for the precise statement. This condition is of univariate nature, and it can, therefore,
be verified even in more complex situations, for instance where X represents the history of
a multivariate time series; see Section 4.1 for details. The shape parameter ξ(x) is important
since it encodes the tail heaviness of the response: if it is positive, the response has a heavy-
tailed distribution such as Pareto or Student-t ; if it is zero, the response is light-tailed such as
a Gaussian or exponential; if it is negative, then the response has a finite upper endpoint.

In order to predict an extreme quantile at level τ > τ0 from approximation (5), we can
invert this expression to find

(6) Qx(τ ) := Qx(τ0) + σ(x)

ξ(x)

[(
1 − τ0

1 − τ

)ξ(x)

− 1
]
.

This shows that an estimate Q̂x(τ ) of an extreme quantile requires estimates of the interme-
diate quantile Q̂x(τ0) and of the conditional GPD parameters ξ̂ (x) and σ̂ (x) as functions of
the predictor vector. For the intermediate quantile function, we can use any of the existing
methods for quantile regression since they work well for this moderate quantile level, as dis-
cussed above. Estimation of the GPD parameters can be done by specifying a parametric or
nonparametric model. We will use neural networks for this purpose, which are introduced in
the next section.

The green line in Figure 3 shows estimates Q̂(τ ) for different quantile levels τ , using
the approximation (6) without covariate dependence, with empirical intermediate quantile at
τ0 = 90% and GPD parameters estimated with maximum likelihood. It can be seen that the
extrapolation solves the bias issue of empirical methods.

2.3. Neural networks and conditional density estimation. The literature on neural net-
works is vast, and existing methods are being improved constantly. We concentrate in this
section on well-established techniques that are most relevant for our purpose of modelling
extreme quantiles.

A multilayer perceptron (MLP) or fully-connected feed-forward neural network model is
a parametric family of nonlinear functions gW : Rp → R

q that map a p-dimensional input x
to a q-dimensional output by

(7) x �→ x(L+1) with x(l) = σ l(Wlx(l−1) + bl) ∀l = 1, . . . ,L + 1,
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where x(0) = x. The number of hidden layers L ∈ N, the hidden layer dimensions h1, . . . ,

hL ∈ N, and the choice of activation functions σ l :Rhl →R
hl , l = 1, . . . ,L+ 1 (with h0 = p

and hL+1 = q) are hyperparameters that need to be chosen for instance by cross-validation.
The set of trainable parameters to be inferred from data contains all weights and bias terms
of the network, that is, W = {(W l, bl); l = 1, . . . ,L + 1}, with Wl ∈ R

hl×hl−1 and bl ∈ R
hl .

Figure 3 shows a schematic illustration of the transformations inside the MLP.
In the general setting, p is the number of features or covariates considered in the model,

and q depends on the task at hand. In order to train a model, a loss function � : R × R →
[0,∞) is required that maps a tuple (y, gW(x)) of response and prediction to a positive
number quantifying their discrepancy. Common tasks include mean regression with q = 1
and squared error loss, quantile regression with q = 1 and quantile loss, and classification
with q equal to the number of possible classes and cross-entropy as loss.

For conditional density estimation, or distribution regression, we suppose that Y follows a
distribution with parametric probability density fY (·; θ) and parameter θ = θ(x), depending
on the vector X = x. Conditional density estimation networks are neural networks that aim at
outputting conditional estimates gW(x) = θ(x) based on realizations of X = x as input (e.g.,
Cannon (2012)). In this setting, p is the dimension of X, and q is the dimension of θ . The
loss function is the deviance or negative log-likelihood loss �(y, θ(x)) = − logfY (y; θ(x)).

To train a neural network on the training dataset D = {(xi , yi)}ni=1, we find the optimal
parameter values minimizing the average empirical loss, that is,

(8) Ŵ ∈ arg min
W

1

n

n∑
i=1

�
(
yi, gW(xi )

)
.

This is generally achieved via backpropagation using mini-batches and optimization al-
gorithms, such as the well-performing gradient descent variants (Kingma and Ba (2014),
Tieleman and Hinton (2012), Duchi, Hazan and Singer (2011)). Since neural networks are
typically overparameterized, overfitting has to be prevented with regularization methods, such
as L2 weight penalties for narrow networks and dropout (Srivastava et al. (2014)) for deeper
architectures. As the optimization problem (8) is often nonconvex, local-minima convergence
is an issue. Restricting training to a subset of D and keeping the rest to track the validation
loss at the end of each epoch helps to avoid local minima by learning rate decay. Restarting
training with different initializations and keeping the best fit in terms of validation loss often
leads to lower minima. Early stopping based on the validation loss is another measure against
overfitting. The final validation loss is used for model selection and the choice of optimal
hyperparameters; for more details on the fitting of neural networks, see Goodfellow, Bengio
and Courville (2016).

When observations are dependent in space or time, generalizations of the MLP exist to
account for these particular structures. Convolutional and graph neural networks exploit
neighbourhood information with parsimonious architectures that are effective for images,
graphs, or spatial observations (LeCun, Bengio and Hinton (2015), Scarselli et al. (2009)).
We concentrate here on methods for sequential dependence that arises typically in time series
{(Xt , Yt )}Tt=1. For this type of data, recurrent architectures of the network allow capturing
dependence between observations. A simple recurrent neural network (RNN) layer (Elman
(1990), Werbos (1988)) takes as input a vector xt and outputs the hidden recurrent state vector

ht = tanh(Wxhxt + Whhht−1 + bh),

depending both on xt and the hidden state ht−1 recursively resulting from the previous in-
puts xt−1 and ht−2 in the sequence. Here and in the sequel, the bias vectors b· and weight
matrices W··, indexed by the input and output variables, are the trainable parameters. This
model has then been improved by the addition of a gating cell state ct to avoid vanishing
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FIG. 4. Single-layer LSTM network flowchart from input x̃t := (xt−s , . . . ,xt−1) to output g̃W (x̃t ), with loss
evaluation. The LSTM cells represent the transformation in (9).

gradient issues as well as a forget gate ft , an input gate it , and output gate ot to control both
short- and long-term dependencies in the sequence. This yields the long short-term memory
(LSTM) layer (Gers, Schmidhuber and Cummins (2000), Gers, Schraudolph and Schmidhu-
ber (2003), Hochreiter and Schmidhuber (1997), Jozefowicz, Zaremba and Sutskever (2015))

(9)

it = σ(Wxixt + Whiht−1 + bi), ft = σ(Wxfxt + Whfht−1 + bf),

gt = tanh(Wxgxt + Whght−1 + bg), ot = σ(Wxoxt + Whoht−1 + bo),

ct = ft 	 ct−1 + it 	 gt , ht = ot 	 tanh(ct ),

where σ(z) = 1/(1 + exp(−z)) is the sigmoid activation and 	 is the Hadamard (or com-
ponentwise) product; see Figure 4 for an illustration. The common dimension of the vectors,
defined in (9), is a hyperparameter of the layer. The input of this layer x̃t := (xt−s, . . . ,xt−1)

can include predictors from the past to model longer dependencies, where s ∈ N determines
the time horizon.

The LSTM model has been simplified by Cho et al. (2014) into the gated recurrent unit
(GRU) layer, which has become a popular alternative. A multilayer recurrent network is ob-
tained by considering the ht as a sequence of inputs for the following recurrent layers; see
Figure S.1 in Supplementary Material S.1 (Pasche and Engelke (2024)). Usually, a fully con-
nected layer as in (7) is used to map the hidden state of the final recurrent layer to the network
output g̃W(x̃t ).

3. Extreme quantile regression neural networks. In this section we propose a new
methodology that combines the extrapolation power of the GPD model with the high-
dimensional predictor space capabilities and flexibility of neural networks to obtain accurate
estimates for quantile functions Qx(τ ) at extreme levels τ . Let D = {(xi , yi)}ni=1 be the train-
ing dataset. Estimation of conditional extreme quantiles Q̂x(τ ), using (6), requires estimators
for the intermediate quantile function Q̂x(τ0) with τ0 < τ and the GPD parameter σ(x) and
ξ(x). It is customary to proceed in two steps.

First, we model the intermediate quantile at level τ0 using classical quantile regression
methods. We then define the conditional exceedances

zi := yi − Q̂xi
(τ0), i ∈ I := {

i = 1, . . . , n : yi > Q̂xi
(τ0)

}
.

The intermediate probability τ0 should be chosen low enough to allow for stable estimation
of Qx(τ0) with classical empirical methods, but high enough for the approximation in (5)
to be accurate, so that the exceedances zi are approximate samples of a GPD. However, it
is not a classical tuning parameter, since different values for τ0 yield different subsets of
exceedances I . Comparison of the loss function (11) on these datasets would, therefore, not
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be meaningful. Instead, the threshold is, in the univariate case, usually selected in terms of
stability plots and sensitivity analyses.

In the second step, we estimate the GPD parameters σ(x) and ξ(x) based on the set of
exceedances zi , i ∈ I . Modelling these parameters directly in the extrapolation formula (6)
may lead to strong dependence between the estimates and numerical instabilities. We, there-
fore, rely on an orthogonal reparametrization that has a diagonal Fisher information matrix.
As for the standard asymptotic GPD likelihood properties, the latter is well-defined for the
GPD model, when ξ(x) > −0.5, and the reparametrization

(
σ(x), ξ(x)

) �→ (
ν(x), ξ(x)

)
, ν(x) := σ(x)

(
ξ(x) + 1

)
yields the desired orthogonality (Cox and Reid (1987), Chavez-Demoulin and Davison
(2005)). In our experiments this reparametrization significantly improves stability and con-
vergence in every considered setting.

In this section we propose a flexible neural network model for the orthogonalized GPD
parameters ν(x;W) and ξ(x;W), where W denotes the collection of all model parameters.
This can be seen as conditional density estimation with output dimension q = 2, where the
parametric family is the GPD model with parameters θ = (ν, ξ) depending on the covariate
X = x. In general, an estimate of the model parameters Ŵ is thus obtained as a minimizer of
the GPD deviance loss over the training exceedances

(10) Ŵ ∈ arg min
W

∑
i∈I

�OGPD
{
zi; ν̂(xi;W), ξ̂ (xi;W)

}
,

where the deviance or negative log-likelihood of the GPD in terms of the orthogonal
reparametrization is

(11) �OGPD(z;ν, ξ) =
(

1 + 1

ξ

)
log

{
1 + ξ

(ξ + 1)z

ν

}
+ log(ν) − log(ξ + 1).

This yields a flexible model for the conditional tail distribution of Y |X = x with which not
only Q̂x(τ ) can be regressed but also conditional exceedance probabilities over a high thresh-
old or conditional expected shortfalls, for example.

In the next two subsections, we discuss the details of the model for independent observa-
tions and for time series data with sequential dependence, respectively.

3.1. Independent observations. We first consider the case where the training data D =
{(xi , yi)}ni=1 is a set of independent, identically distributed observations of (X, Y ). The goal
in this case is the estimation of the conditional quantile Qx(τ ) for a predictor value X = x
at an extreme level τ > 0. For the first step of estimating the intermediate quantile function,
in principle, any classical quantile regression method can be used. To avoid overfitting and
obtain unbiased generalization error estimates from the training set D, the predicted Q̂xi

(τ0),
i = 1, . . . , n, should be constructed out of training sample. This is achievable in two ways.
Using bagging methods, such as generalized random forests (Athey, Tibshirani and Wager
(2019)), is a convenient choice since they allow for out-of-bag predictions where only a
single fit on D is required. For other methods such as quantile regression neural networks
(Cannon (2011)), out of training sample predictions can be obtained in a foldwise manner
similar to cross-validation. In the sequel we assume that the intermediate quantile, and thus
the exceedances, are given.

In the second step, we propose to model the orthogonalized GPD parameters ν(x) and ξ(x)

by a fully-connected feed-forward neural network with parameter vector W and deviance loss
function as in (10); see Section 2.3 for details. Choices of the network architecture such as
the number of neurons, the number of layers and activation functions, are hyperparameters,
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denoted by 	, to be selected. We provide sensible default values in our implementation, but
one can also choose them in a data-driven way based on a validation set.

The only restrictions are on the output activation functions, since ν(x) should be strictly
positive. We find the exponential function or the SELU activation (Klambauer et al. (2017))
shifted above zero to be good choices. Regarding the output activation for ξ , no strict re-
strictions apply and the identity would be a natural choice. However, standard likelihood
regularity properties are not satisfied for the GPD model when ξ ≤ −0.5, which very rarely
occurs in practice. We observe that smoothly restricting the shape estimates, for example,
between −0.5 and 0.7 with the activation x �→ 0.6 tanh (x) + 0.1, helps to improve training
stability. This avoids aberrant ξ estimates in the early stages of the training and still covers al-
most all practical cases. In many situations it is reasonable to assume that only the scale ν(x)

varies locally but ξ(x) ≡ ξ is constant (e.g., Kinsvater, Fried and Lilienthal (2016)). This can
be achieved by restricting the network so that the shape output only depends on a bias term.

Algorithm 1 summarizes our extreme quantile regression network (EQRN) for indepen-
dent observations, which takes the intermediate quantiles and training data as input and out-
puts the extreme quantile at a desired test predictor value x ∈ R

p and level τ > τ0. Optionally,
the conditional GPD parameters can also be obtained.

The conditional GPD estimation in the second step relies on the exceedances to ensure
that only information from the tail is used for extrapolation. There may, however, be residual
information in the moderately extreme observations that should not be discarded. We propose
to use the intermediate quantiles Q̂xi

(τ0) as an additional feature in the conditional density
estimation. This feature engineering seems to consistently and significantly improve the accu-
racy of the final prediction Q̂x(τ ) on test data in our simulations. This idea is, to some degree,
related to stacked learning (Breiman (1996), Wolpert (1992)) and is achieved by considering

Algorithm 1 EQRN for independent observations
The tuning parameters 	 for the conditional GPD density estimation network gW and the
intermediate quantile model Q̂·(τ0) capable of out-of-sample prediction are pre-specified.
The training data D = {(xi , yi)}ni=1 and test covariates x are observed. Let τ ∈ (τ0,1) be the
desired probability level.

1: procedure EQRN-FIT(D, 	, Q̂·(τ0))
2: I ← {i = 1, . . . , n : yi > Q̂xi

(τ0)}
3: zi ← yi − Q̂xi

(τ0) ∀i ∈ I
4: T ,V ← RANDOMVALIDATIONSPLIT(I)  If no validation: T = I,V = ∅

5: Ŵ ← INITIALIZENETWORKWEIGHTS(	)
6: for e = 1 to maximum number of epochs E do
7: for all B ∈ GETMINIBATCHES(T ) do
8: {(ν̂i , ξ̂i)}i∈B ← gŴ(xB, Q̂xB(τ0))

9: � ← ∑
i∈B �OGPD(zi, ν̂i , ξ̂i)/|B|

10: Ŵ ← BACKPROPUPDATE(�, Ŵ , xB , Q̂xB(τ0), 	)

11: stop if V �= ∅ and LOSSNOTIMPROVING(Ŵ , xV , Q̂xV (τ0), zV )

12: output Ŵ

13: procedure EQRN-PREDICT(x, τ , Ŵ , Q̂·(τ0))
14: {ν̂(x), ξ̂ (x)} ← gŴ(x, Q̂x(τ0))

15: σ̂ (x) ← ν̂(x)/{ξ̂ (x) + 1}
16: compute Q̂x(τ ) w.r.t. σ̂ (x), ξ̂ (x), Q̂x(τ0), τ and τ0 using equation (6)
17: output Q̂x(τ ), and optionally {σ̂ (x), ξ̂ (x)}
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the (p + 1)-dimensional vector (xi , Q̂xi
(τ0)), i = 1, . . . , n, instead of xi as predictors, for the

network input. To avoid overfitting, it is again important that the intermediate quantile esti-
mates are constructed out of training sample. This new feature also improves other extreme
quantile regression methods, such as the GBEX model (Velthoen et al. (2023)), as observed
in our simulations in Section 4.

Classical backpropagation and optimization procedures are performed to find Ŵ . To avoid
overfitting and local minima convergence, the validation loss can be tracked as discussed in
Section 2.3. The hyperparameters 	 of this network include choices of optimization algo-
rithms and regularization, for instance. More details on the function calls in the algorithm
can be found in Supplementary Material S.2.

Since the true quantile Qx(τ ) is unknown in real-world data, we can not assess the per-
formance of Q̂x(τ ) with metrics such as mean squared or absolute errors. As illustrated in
Section 2.1, the quantile loss is also unreliable due to the data scarcity at extreme quantiles.
We, therefore, choose the final validation loss based on the GPD deviance to compare differ-
ent choices of hyperparameters, as it is the most reliable surrogate metric.

3.2. Sequential dependence. In many applications the observations are not independent
but display sequential dependence, such as in time series. In this case we denote the training
data by D = {(xt , yt )}Tt=1, which are observed sequentially from a time series {(Xt , Yt )}Tt=1.
The goal here is different from the case of independent observations. Indeed, we would like
to predict as well as possible high quantiles of the response Yu at some time point u one step
in the future based on all past information X̃u := {(Xt , Yt )}t<u. Therefore, the target is

(12) Qx̃u
(τ ) := F−1

Yu|X̃u=x̃u
(τ ),

where x̃u := {(xt , yt )}t<u are observations that are not necessarily part of the training set. In
this section we propose a recurrent neural network to solve this task. Several principles are
the same as in the case of independent observations, such as the choice of output activation
functions. We thus focus on the differences to the independent case.

While in principle it is still possible to use any classical quantile regression method to
model the intermediate conditional quantiles at level τ0, we recommend using quantile re-
gression neural networks (Cannon (2011), Zhang, Quan and Srinivasan (2019)) with a re-
current architecture. These models are specifically designed for sequential dependence and
can easily adapt to varying sequence lengths of the input features X̃t . In our experiments,
recurrent quantile regression neural networks consistently outperformed generalized random
forests in the presence of sequential dependence. Although a varying sequence length of input
features is possible, we restrict this length to a fixed horizon s � T for computational effi-
ciency. Thus, for any time point t , we define its past by x̃t = {(xj , yj )}t−1

j=t−s . For simplicity,

we denote our augmented training set by D̃ = {(x̃t , yt )}Tt=s+1.
Algorithm 2 summarizes our EQRN for sequential data. For the estimation of the condi-

tional GPD parameters, the main difference compared to the independent model is the use
of a recurrent architecture to capture the sequential nature of the data. If validation splitting
is used during training, the split should preserve the sequential structure instead of being
performed randomly. For the use of the intermediate quantile as a feature, two approaches
seem relevant. The first one is to only use Q̂x̃t

(τ0) as a separate additional input to x̃t in
the network. The second approach is to also use past intermediate information by consider-
ing {(xj , yj , Q̂x̃j

(τ0))}t−1
j=t−s , instead of x̃t , as input features to model the GPD parameters

ν(x̃t ) and ξ(x̃t ). We prefer the second approach, as it can pass more information to the tail
model. More details on the function calls in the algorithm can be found in Supplementary
Material S.2.
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Algorithm 2 EQRN for sequential observations
The tuning parameters 	 for the recurrent conditional GPD density estimation network g̃W ,
the intermediate quantile model Q̂·(τ0) capable of out of sample prediction and horizon s are
prespecified. The training data D̃ = {(x̃t , yt )}Tt=s+1 and test covariates x̃u are observed. Let
τ ∈ (τ0,1) be the desired probability level.

1: procedure EQRN-FIT(D̃, τ0, s, 	, Q̂·(τ0))
2: zt ← yt − Q̂x̃t

(τ0) ∀t ∈ I := {t = s + 1, . . . , T : yt > Q̂x̃t
(τ0)}

3: T ,V ← SEQUENTIALVALIDATIONSPLIT(I)
4: Ŵ ← INITIALIZERECURRENTNETWEIGHTS(	)
5: for e = 1 to maximum number of epochs E do
6: for all B ∈ GETMINIBATCHES(T ) do
7: {(ν̂t , ξ̂t )}t∈B ← g̃Ŵ(x̃B, Q̂x̃B(τ0))

8: � ← ∑
t∈B �OGPD(zt , ν̂t , ξ̂t )/|B|

9: Ŵ ← BACKPROPUPDATE(�, Ŵ , x̃B , Q̂x̃B(τ0), 	)

10: stop if V �= ∅ and LOSSNOTIMPROVING(Ŵ , x̃V , Q̂x̃V (τ0), zV )

11: output Ŵ

12: procedure EQRN-PREDICT(x̃u, τ , Ŵ , Q̂·(τ0))
13: {ν̂(x̃u), ξ̂ (x̃u)} ← g̃Ŵ(x̃u, Q̂x̃u

(τ0))

14: σ̂ (x̃u) ← ν̂(x̃u)/{ξ̂ (x̃u) + 1}
15: compute Q̂x̃u

(τ ) w.r.t. σ̂ (x̃u), ξ̂ (x̃u), Q̂x̃u
(τ0), τ and τ0 using equation (6)

16: output Q̂x̃u
(τ ), and optionally {σ̂ (x̃u), ξ̂ (x̃u)}

The training data consists of time points {1, . . . , T }, while the test data uses information
from time points {u − s, . . . , u − 1} to predict at time u. These two intervals are typically
disjoint when the model was fitted in the past and is applied for prediction in the present. The
prediction model can, of course, be used to predict on the training data when u ≤ T , but such
predictions might be overly precise since yu was used in the training procedure.

4. Simulation study.

4.1. Setup. In this section we assess the accuracy of our EQRN model in predicting
extreme conditional quantiles on simulated data and compare it to existing state-of-the-art
methods. The aim is to study a simplified version of the application, which motivates the
simulation setup and modelling choices. We thus focus on the case of sequentially dependent
data; a simulation study for independent data can be found in Supplementary Material S.3.

The main competitors from the extreme value literature in terms of flexibility are the gen-
eralized additive models (EGAM) (Youngman (2019)) and gradient boosting for extreme
quantile regression (GBEX) (Velthoen et al. (2023)), which both use conditional GPD mod-
elling. For sequentially dependent data, we also consider the extreme quantile autoregression
(EXQAR) (Li and Wang (2019)) as, although assuming linear quantile dependence, the model
is designed for time series. As a benchmark we consider an unconditional GPD model that
ignores the covariate dependence altogether and a semiconditional GPD model that uses the
covariate only for the intermediate quantile. We include results for the generalized random
forests for quantile regression (GRF) (Athey, Tibshirani and Wager (2019)), which does not
use extrapolation for high quantiles. The training data D = {(xt , yt )}Tt=1, with T = 7000, are



2830 O. C. PASCHE AND S. ENGELKE

sequentially generated from the time series

(13)

⎧⎪⎪⎨
⎪⎪⎩

Yt = σt

∣∣εY
t

∣∣, Xt = 0.4 · Xt−1 + ∣∣εX
t

∣∣, εY
t , εX

t ∼N (0,1),

σ 2
t = 1 + 0.1 · {

2Y 2
t−1 + Y 2

t−2 + Y 2
t−3 + Y 2

t−4 + Y 2
t−5

}+
+ 0.1 · {

3X2
t−1 + 2X2

t−2 + X2
t−3 + X2

t−4 + X2
t−5

}
.

Figure S.5 in Supplementary Material S.4 shows part of the simulated data. To have a fair
comparison, all methods use the same covariate vectors x̃t = {(xj , yj )}t−1

j=t−s with s = 10.

This model admits a GPD approximation as in (5) since the conditional distribution Yt |X̃t =
x̃t is a folded normal distribution, and its tail can, therefore, be approximated by a GPD with
shape parameter ξ(x̃t ) = 0. For the methods that use covariate-dependent intermediate quan-
tiles, we use the same estimates Q̂x̃t

(τ0) with τ0 = 80% from a recurrent quantile regression
neural network (QRN); for a sensitivity analysis of the choice of τ0, see Supplementary Ma-
terial S.4. The best QRN architecture and hyperparameters are chosen based on validation
quantile loss. For the methods that use covariate-dependent GPD parameters, we also use
Q̂x̃t

(τ0) as additional covariate. Although designed for univariate time series, we adapted
EXQAR to accept several covariate sequences. Those two choices significantly improve the
competitors’ performances.

For the EQRN model, 2000 observations are kept for validation tracking, and thus only
the remaining 5000 are effectively used for weight training. The best choices for EQRN
hyperparameters are made based on validation loss by performing a grid search over a set of
possible values and network architectures. All other models are fitted on the whole training
dataset, as they do not use validation loss tracking. The best set of hyperparameters for GBEX
(tree depths, learning rate and number of trees) are chosen using cross-validation, and the
ground truth for whether the shape is constant is given to EGAM. For EXQAR we use δ2n =
n−0.9, as recommended by the authors, but set δ1n = 1 − τ0, thus increasing the number
of quantile pseudo-observations used for inference and allowing better comparison with the
other methods. The predictions of all models are evaluated by their root mean squared error
(RMSE) compared to the true conditional quantiles on a newly generated test dataset that
follows the same distribution as the training data in (13).

4.2. Results. For estimation of the conditional GPD parameters with our recurrent
EQRN model, we consider both LSTM and GRU architectures with one to three recurrent
layers and hidden dimensions between 32 and 256. As the networks are not too deep, L2
penalty was chosen over dropout for regularization during training, with possible penalty
λ ∈ {0,10−6,10−5,10−4,10−3}. Both constant and covariate-dependent shape parameter
outputs are considered. The model with minimum validation loss is a single LSTM layer
with hidden dimension 128, followed by the usual fully connected output layer, with constant
shape and λ = 10−4. As a comparison we also retain predictions for the best unpenalized net-
work with λ = 0 and fixed shape, which has two LSTM layers of hidden size 128.

The left panel of Figure 5 shows the RMSE of best penalized and unpenalized EQRN mod-
els, compared to the improved competitors, as a function of the quantile level τ . We observe
that, for the lowest level τ = τ0 = 80%, all structured GPD models have the same perfor-
mance since they use the same intermediate quantiles. GRF and the unconditional model
have already higher errors since they are not able to capture the sequential dependence at
the intermediate level sufficiently. For growing quantile levels τ , the errors of the covariate-
dependent GPD models start to diverge. This is due to the differences in modelling flexibility
in terms of the GPD parameters of each method. We observe a similar behaviour for EXQAR,
as its linear quantile dependence is not flexible enough. Our EQRN method based on recur-
rent neural networks seems to be best at modelling sequential tail dependence.
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FIG. 5. Left: Root mean squared error between predicted and true conditional quantiles at different probability
levels τ (log-scale), for the selected EQRN models and the improved competitors. Centre-right: True vs. predicted
quantiles at probability level τ = 99.95% for the best unpenalized (middle) and penalized (right) EQRN models
(dots), compared to the semiconditional estimates (crosses).

Figure 5 also shows the predicted quantiles Q̂x̃u
(τ ) on the test data compared to the true

Qx̃u
(τ ) for a fixed τ = 99.95% for the best penalized and unpenalized EQRN models. In

general, both models seem to perform well in predicting the high conditional quantiles. The
weight penalty seems to mainly affect the larger quantile predictions. Compared to the unpe-
nalized model, we observe that the reduction in the variance of the predictions comes at the
cost of a bias for larger quantile values. This bias-variance trade-off is typical with penaliza-
tion. The poor performance of the semiconditional estimates highlights the added value of
covariate dependence in the GPD parameters.

As discussed in Section 3, the choice of the intermediate level τ0 generally has an impact
on the prediction accuracy. In our covariate-dependent setting, where the model for the condi-
tional GPD is a flexible regression model, this choice seems to have less importance. Indeed,
even for a fairly low value of τ0, the flexibility of the neural network model seems to be able
to absorb some of the approximation bias; see Supplementary Material S.4 for details.

Additional results on the quantile R squared coefficient and bias-variance decomposition
of the RMSEs presented in Figure 5 are also discussed in Supplementary Material S.4.

5. Application.

5.1. Motivation. Flood risk is a major natural hazard in Europe, which causes huge eco-
nomic damage and endangers human lives. There is a longstanding interest in statistical meth-
ods of extreme value theory for hydrology (e.g., Katz, Parlange and Naveau (2002), Keef,
Tawn and Svensson (2009), Asadi, Davison and Engelke (2015), Engelke and Hitz (2020)),
and national agencies commonly use them to assess the long-term risk of flooding in cities,
at power plants, and other key locations. Return levels with long return periods can be esti-
mated using the GEV distribution for annual maxima or the GPD model for daily threshold
exceedances. The output then guides effective long-term flood management measures.

An example of an important location in Switzerland is the gauging station in Bern on the
Aare river, which is shown within its water catchment in Figure 1. The Swiss Federal Office
for the Environment (FOEN) monitors the Aare, and we use daily average discharges (in
m3s−1) in Bern and another upstream station together with recordings of daily precipitation
(in mm) at six locations in the Bern catchment; see Figure 1 for details. All time series are
available in the period from 1930–2014 and can be obtained from the FOEN2 (for discharges)

2https://www.hydrodaten.admin.ch/.

https://www.hydrodaten.admin.ch/
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FIG. 6. Daily average discharge observations at Bern–Schönau (62) and at the upstream station at Gsteig (42)
and daily precipitation at the closest meteorological station to Bern (BEP), over five years; see Figure 1 for
geographical locations of the gauging stations.

and MeteoSwiss3 (for precipitation). Figure 6 shows an excerpt for the two river stations and
one precipitation gauge.

To illustrate possible drawbacks of a classical extreme value analysis, the left panel of Fig-
ure 7 shows the annual maxima of river discharges at the Bernese station on the Aare. The
dashed line is the estimated 100-year return level based on the GEV approximation using the
training period from 1930–1958. One can see that starting from the year 1999 there are sev-
eral exceedances over this return level, somewhat contradicting the fact that it should only be
exceeded on average once in 100 years. The solid line is the same return level based on data
from 1930–y, where y ∈ {1959, . . . ,2014} denotes the end of the training period. While the
predictions are fairly stable until 1999, an extreme value analysis performed after that year
would yield much higher values for the 100-year return level. Conversely, historical estimates
before such a break-point would severely underestimate the flood risk. In general, distribu-
tional shifts can be due to climate change, changes in the river system, or other structural
breaks in factors influencing discharge at this location. For the Bernese station, the FOEN in-
deed reports a significant break-point in extreme discharges in the nineties but acknowledges
that a clear cause can not be identified.4 One factor may be a multidecadal variability of flood
occurrence, as described in Schmocker-Fackel and Naef (2010).

The aim of our methodology is complementary to classical extreme value analysis and
addresses this issue with static return levels. We apply our EQRN model to estimate one-
day-ahead extreme quantiles of the river discharge conditionally on previous observations
of discharge and precipitation in the catchment. This allows the forecasting of flood risk
even in nonstationary systems, such as a changing climate. The strength of our approach lies
in the ability to exploit information from multiple covariates and capture the complex time
dependence. Even in situations where the causes for structural changes are unknown, our
method implicitly accounts for them through their effects on the covariates. The output of the

3https://gate.meteoswiss.ch/idaweb.
4See flood report of the FOEN at https://www.hydrodaten.admin.ch/en/2135.html.

https://gate.meteoswiss.ch/idaweb
https://gate.meteoswiss.ch/idaweb
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FIG. 7. Left: annual maxima of daily average discharges (points) at Bern–Schönau (62) together with the un-
conditional 100-year return level based on GEV fitted on the training data of 1930–1958 (dashed line), and the
evolution of the same return level (solid line) using data from 1930–y, where y ∈ {1959, . . . ,2014} denotes end
of the period. Middle: evolution of the validation loss (solid line) of the selected EQRN network for the river
discharge data as a function of the training epoch; the dashed line shows the validation loss of the semi-condi-
tional model. Right: number of observations exceeding the EQRN quantile predictions on the test set (dotted line)
compared to the expected number of exceedances (solid line) for different probability levels (log-scale).

model can help practitioners and authorities to manage flooding more effectively and help to
minimize their disastrous impacts by early warning systems.

To illustrate our methodology and show its effectiveness in comparison to classical fore-
casting approaches, we consider in more detail the flood in August 2005 in Switzerland. At
the Bernese gauging station, it was the largest event since the beginning of the recordings,
and it caused severe economic damage across large parts of the country and the loss of several
lives.

5.2. Model specification. The whole dataset consists of 31,046 daily observations
(xt , yt ) between 1930–2014. The response yt is the daily average discharge at the Bernese
gauging station on the Aare, and the covariates xt ∈ R

p , p = 7, consist of discharge at an-
other upstream station and daily precipitation measurements from six locations in the same
catchment; see Figures 1 and 6. The discharges show significant seasonality, both in trend and
variance, with the largest extremes only appearing in the summer. We do not reduce artifi-
cially the nonstationarity via classical approaches from times series analysis (e.g., Cleveland
et al. (1990)), as we believe the seasonality and other trends are captured through the covari-
ates.

We split the data into training and test sets. The first T = 10,349 observations in the period
between 1930–1958 are used to train the models, whereof the first three-quarters serve the pa-
rameter estimation, and the remaining quarter is a validation set to determine hyperparameters
(sets T and V in Algorithm 2, respectively). The test set contains 20697 observations from
1958–2014, which is used for neither fitting nor selection of parameters but only to evaluate
the model performance on an independent time period. We choose this rather small propor-
tion of training data to study the ability of the model to adapt to possible nonstationarity over
time without refitting. In particular, the model weights are not updated with any information
from data after 1958, even for forecasts in the study of the 2005 flood of interest. A large
test set is also required to evaluate extreme properties of the data distribution. As augmented
covariates at time t for the recurrent neural network models, we use the s = 10 preceding
days and set x̃t = {(xj , yj )}t−1

j=t−s . The augmented training set is then D̃ = {(x̃t , yt )}Tt=s+1.
Only observations of the p + 1 = 8 variables during the preceding 10 days are used to predict
one day ahead for a new test time point.



2834 O. C. PASCHE AND S. ENGELKE

As discussed in Section 3, we perform two steps for the estimation of the conditional tail
model. First, we fit an intermediate quantile regression model to estimate Qx̃t

(τ0). As in the
simulations with sequential dependence, we choose a recurrent QRN for this purpose and set
τ0 = 0.8. For the second step, we include the intermediate quantile estimates Q̂x̃j

(τ0) during
the same time horizon j = t − s, . . . , t − 1 as additional covariates, and, slightly abusing
notation, we denote x̃t as the new covariate vector; see Section 3.2. A recurrent EQRN is
then fitted to the exceedances for estimation of the conditional GPD parameters σ(x̃t ) and
ξ(x̃t ); see Algorithm 2. Similarly to the study in Section 4.2, a grid search is performed on
the training data to select the best hyperparameters and architectures for both recurrent neural
network models based on validation losses.

The final model chosen to regress the intermediate quantiles is a QRN with two LSTM
layers of dimension 256, followed by the usual fully connected layer, and L2 weight penalty
with parameter λ = 10−6. The chosen EQRN model has two LSTM layers of dimension 16,
followed by a fully connected layer, and L2 weight penalty with parameter λ = 10−6.

5.3. Results. The middle panel of Figure 7 shows the validation loss (solid line) of the
selected EQRN model as a function of the training epoch. It can be seen that already after a
few epochs, the method has a lower loss than the simple semiconditional model with constant
GPD parameters σ and ξ (dashed line). This shows that the GPD distribution varies with the
predictor values x̃t and that a flexible model is beneficial.

The main output of the EQRN model are the extreme quantile estimates Q̂x̃u
(τ ) for a level

τ and a time point u of interest, conditionally on the past covariates x̃u. These one-day-ahead
risk forecasts are shown as a function of time on the test set in the top panel of Figure 2.
We observe that the model is able to extrapolate beyond the range of the data since the event
shown in the plot is unprecedented and the predictions still anticipate the first exceedance of
the unconditional 100-year return level Q100.

An unconditional τ -quantile is defined as the value that is exceeded by a proportion of
1 − τ of the data. An analogous property holds for conditional quantiles in data with sequen-
tial dependence, which yields a natural model assessment tool. On the population level, if
(X̃t , Yt )

T
t=1 is the random time series with augmented covariate vectors, then the expected

number of exceedances over the true conditional τ -quantiles QX̃t
(τ ) is

E

T∑
t=1

1
{
Yt > QX̃t

(τ )
} = (1 − τ)T .

Consequently, plugging in the data (x̃t , yt )
T
t=1 and estimates Q̂x̃t

(τ ) from a quantile regres-
sion method, the equation should approximately hold if the model is well-calibrated. Such
a model assessment plot is shown in the right-hand panel of Figure 7 for our EQRN fit as a
function of the quantile level τ . We observe that the model is fairly well-calibrated, with a
slight bias toward more exceedances than expected.

An additional output are the corresponding GPD parameters σ(x̃u) and ξ(x̃u), which to-
gether with the intermediate quantile Q̂x̃u

(τ0) specify the whole tail of the distribution of
Yu|X̃u = x̃u according to (5). For a given threshold level of interest Q, we can plot the flood
risk for the next day as the one-day-ahead forecast of the exceedance probability over Q,
that is, an estimate of the function u �→ P(Yu > Q|X̃u = x̃u). The bottom panel of Figure 2
shows the EQRN-based estimate of this function on the test set as a ratio to the unconditional
P(Yu > Q), where the threshold Q is chosen as the static 100-year return level Q100 based on
the GEV distribution fitted on the training set; this threshold is relevant since it is often used
to determine the height of dams for flood management. It results in a daily measure of how
likely the exceedance on the next day is compared to what was expected unconditionally.
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FIG. 8. Discharge at Bern–Schönau (62) and Gsteig (42) and precipitation at BEP during the period of the 2005
flood, where diamonds indicate covariates used for prediction of the 100-year conditional quantile (triangle) on
August 22, 2005; other precipitation stations are not shown. The top panel also shows the unconditional 100-year
return level (dashed line) fitted on the training data and predictions on other days (solid line).

Times with large predicted probability ratios are apparently times of imminent danger that
can be used as triggers for early warning systems or additional flood management measures.

As an example, one may issue a warning when the forecasted conditional probability of
exceeding Q100 is, say, a hundred times larger than the baseline unconditional probability
P(Yu > Q100). In the test data, there are four time clusters, which typically last several days,
when Q100 is exceeded; see Figure 8 for one of these events. Applying this early warning
system, in all four of these cases a timely warning would have been issued on the days pre-
ceding the first exceedance of the cluster. Such a decision rule would lead to an average of
only 1.3 warnings for clusters of exceedances per year on the test set and is, therefore, not
overly conservative. As the model does not need refitting on the test set, the daily forecast
and possible warnings are obtained in less than one second of computation time, even on a
CPU-only laptop computer.5 The training time for the selected GPD network took less than
15 minutes.

We consider the period of the 2005 flood in Bern in more detail. Figure 8 shows the two
discharge time series and precipitation at the closest meteorological station before and after
the event. On the evening of August 21, 2005, the day preceding the first exceedance of the
100-year GEV return level (horizontal dashed line), the prediction of our EQRN already in-
dicated a sudden increase in the probability of this exceedance; see bottom panel of Figure 2.
Equivalently, the blue point in Figure 8 shows the increased value of the conditional 100-year
quantile predicted by the model. The diamonds mark the observations of the previous 10 days
that were used for this prediction.

In this case the high precipitation values on August 21 and the preceding days seem to
have driven this prediction, possibly together with high values of the rivers. It is interesting
to note that a similar situation on August 2 has not resulted in a “flood warning” since the
forecasted exceedance probability and return level are not exceptionally high—as a matter of

5Intel Core i5-8265U 1.6 GHz processor with four cores, and eight GB of RAM memory.
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fact, there was no exceedance on the next day. This means that the predictions are driven by
a complex combination of the risk factors X̃t in space and time that are well-captured by the
recurrent architecture of the EQRN.

At the time the FOEN used an adapted version of the hydrological model HBV (Lindström
et al. (1997)) for forecasting river discharges based on several inputs such as precipitation
forecasts. However, the forecasts prior to this event underestimated the flood risk and resulted
in too-late warnings. Physical models for discharges and precipitation do not use explicit
extrapolation in the extreme tails and often have poor performance in the largest predictions.
In fact, during the 2005 flood, a main reason for the late warnings was that forecasters did
not trust the predicted precipitation amounts during this extreme scenario. In the aftermath
of this flood, the FOEN, therefore, published a detailed analysis of the internal forecasting
procedures (Bezzola and Hegg (2007)). The exact forecasts from that time are not available,
but the above discussion of the results shows that our statistical methodology is a competitive
alternative to physical models for the forecasting of flood risk. We also note that our model
uses much less information, as it relies only on observed discharge and precipitation and does
not require forecasts of atmospheric variables.

In Section S.5 of the Supplementary Material, we compare and discuss the forecasts of
our EQRN method with those of some of the competitors. Figures S.8–S.11 show that all
methods seem to capture at least some of the temporal structure based on the past covariates.
Except for the GBEX method, the forecasts of the competitors suffer, however, from a low
sensitivity to changes in the conditional tail or from a too erratic behaviour as a function of
time. Overall, the recurrent structure of our EQRN method, therefore, seems to be the best
suited model for this kind of sequentially dependent data. Since in real-world applications
the true quantiles are unknown, direct computation of the prediction error is difficult, and
model assessment plots as in the right-hand panel of Figure 7 are crucial. This highlights
the importance of simulation studies to evaluate and compare quantitatively the accuracy of
different methods. In particular, in situations with temporal dependence, our EQRN method
clearly outperforms the competitors (e.g., Figure 5). This is another indicator to trust the
EQRN forecasts in applications.

6. Conclusion. Our EQRN model combines extrapolation results from extreme value
theory with the prediction power of neural networks. It provides a flexible and versatile
method for extreme quantile regression that is capable of prediction beyond the range of the
data in the presence of a large number of covariates. Customised network architectures can
be used in our open-source “EQRN” R package, allowing for tailor-made models capturing
all types of potential dependencies between covariates and between observations.

The main focus in this paper was the case of sequential dependence to develop a tool for
risk forecasting in time series that can be used for effective early warning systems in flood
management. Our model already performs well in issuing sparse warnings for the days with
increased risk of flooding, as illustrated in the case study of the Aare catchment in Switzer-
land. A further improvement could be attained by using additional covariates as input of the
model. This could include observations of variables that are typically used in hydrological
models, such as soil moisture, or forecasts of atmospheric variables such as precipitation and
temperature.

Many other applications seem pertinent. Even in the case of independent data, our simula-
tion study in Supplementary Material S.3 shows that neural networks outperform tree-based
methods, such as ERF and GBEX, if the quantile function is more complex. Applications
are financial risk assessment in insurance companies or banks. For spatial data, images, or
graphs, convolutional or graph neural networks (LeCun, Bengio and Hinton (2015), Scarselli
et al. (2009), Wu et al. (2021)) are known to perform extremely well in capturing neighbour-
hood structures. Our EQRN method can, therefore, be applied to quantify the risk of climate
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extremes where the predictor space contains spatiotemporal observations of meteorological
variables (e.g., Boulaguiem et al. (2022)). Transformer architectures (Vaswani et al. (2017))
can also perform well for spatiotemporal or more complex dependencies.

The price for the high flexibility of machine learning methods, which focus on predic-
tion accuracy, is limited statistical interpretability. However, feature-importance identifica-
tion methods are becoming increasingly popular for interpreting neural network predic-
tions (Lundberg and Lee (2017)). There is also active research on the construction of pre-
diction intervals for black-box methods, for instance, through conformal inference (Lei et al.
(2018), Romano, Patterson and Candes (2019)). How such techniques can be adapted to as-
sess uncertainty for extreme quantile regression is an interesting future research question.
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independent data, additional results for the simulation study on dependent data, an analysis
of the EQRN sensitivity to the intermediate probability level and competitor approaches to
the application.

Reproducibility and R package (DOI: 10.1214/24-AOAS1907SUPPB; .zip). An open-
source “EQRN” R package implementation of the proposed methodology is available on
https : //github.com/opasche/EQRN. The code and data with detailed instructions
to reproduce the results presented in this paper, and more, are available as supplementary
material and on https : //github.com/opasche/EQRN_Results.
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